
http://enthuware.com

Exceptions Summary

You must remember the following points:

1. The base class of all exceptions is java.lang.Throwable.
java.lang.Error and java.lang.Exception are the only two subclasses of
java.lang.Throwable. java.lang.RuntimeException is a subclass of Exception.
All of these classes are collectively called as “exceptions” (with lower case e).

2. java.lang.Error , java.lang.RuntimeException, and their subclasses are
categorized as “unchecked exceptions”, which means the compiler doesn’t care
if a piece of code may potentially throw these exceptions. The compiler doesn’t
“check” the code for these exceptions. All other exceptions are “checked
exceptions”. The compiler checks if a piece of code may potentially throw such
exceptions and if it finds a possibility, then it forces you to either put that code in
an appropriate try/catch block or to declare the them in an appropriate throws
clause of the encompassing method or constructor.

3. java.lang.Error is used by the JVM to throw exceptions that have nothing to do
with the program code as such but occur because of the environment. For
example, java.lang.OutOfMemoryError . Error indicates serious problems that a
reasonable application should not try to catch. Most such errors are abnormal
conditions. Error and its subclasses are regarded as unchecked exceptions for the
purposes of compile-time checking of exceptions.

4. java.lang.Exception is used by the programmer when it encounters exceptional
situation in the program. For example, java.io.IOException which can be used
by a programmer to indicate trouble reading a file.

5. java.lang.RuntimeException (extends Exception) is used to report exceptional
situations that cannot be predetermined at compile time. For example,
IndexOutOfBoundsException or NullPointerException.

6. A quick way to determine who should throw an exception is to see if the
exception extends java.lang.Error. Errors are always thrown only by the JVM.
Generally, RuntimeExceptions are also thrown by the JVM. However, it is ok for
an application to throw a RuntimeException if it makes sense for the application
to throw it in a given situation.

7. Checked exceptions that you should know about for the exam –
java.lang.Exception, java.io.IOException extends java.lang.Exception,
java.io.FileNotFoundException extends java.io.IOException.

8. Unchecked exceptions that you should about for the exam – All the ones
mentioned below.

http://enthuware.com

Exceptions thrown by JVM
Thrown

1. java.lang.ArrayIndexOutOfBoundsException extends java.lang. IndexOutOfBoundsException,
which extends java.lang.RuntimeException

Thrown when attempting to access an array with an invalid index value (either negative or beyond the length
of the array).

Example :
int[] ia = new int[]{ 1, 2, 3}; // ia is of length 3.
System.out.println(ia[3]); //exception !!!

2. java.lang.ClassCastException extends java.lang.RuntimeException
Thrown when attempting to cast a reference variable to a type that fails the IS-A test.

Example :
Object s = “asdf”;
StringBuffer sb = (StringBuffer) s; //exception at runtime because s is referring to a String.

3. java.lang.NullPointerException extends java.lang.RuntimeException
Thrown when attempting to call a method or field using a reference variable that is pointing to null.

Example :
String s = null;
System.out.println(s.length()); //NullPointerException at runtime because s is null.

4. java.lang.ArithmeticException extends java.lang.RuntimeException
Thrown when you try to divide by zero.

Example :
public class X { static int k = 0;
 public static void main(String[] args){
 k = 10/0; //throws java.lang.ArithmeticException
 }
}

5. java.lang.AssertionError extends java.lang.Error
Thrown to indicate that an assertion has failed i.e.when an assert statement’s boolean test expression returns
false. Note that the programmer does not explicitly throw AssertionError using the throw keyword. The
JVM throws it automatically when an assertion fails.

Example:

private void internalMethod(int position)
{
 assert (position<100 && position >0) : position; //throws AssertionError if postion is > 100 or < 0
}

6. java.lang.ExceptionInInitializerError extends java.lang.Error
Thrown when any exception is thrown while initializing a static variable or a static block.

Example :

http://enthuware.com

public class X { static int k = 0;
 static{
 k = 10/0; //throws java.lang.ArithmeticException but this is wrapped into a

 //ExceptionInInitializationError and thrown outside.
 }
}

7. java.lang.StackOverflowError extends java.lang.Error
Thrown when the stack is full. Usually thrown when a method calls itself and there is no boundary
condition.

Example :
public void m1(int k){
 m1(k++); // java.lang.StackOverflowError thrown at runtime.
}

8. java.lang.NoClassDefFoundError extends Error
Thrown if the Java Virtual Machine or a ClassLoader instance tries to load in the definition of a class (as
part of a normal method call or as part of creating a new instance using the new expression) and no
definition of the class could be found. The searched-for class definition existed when the currently
executing class was compiled, but the definition can no longer be found.

Example :
Object o = new com.abc.SomeClassThatIsNotAvailableInClassPathAtRunTime(); // exception at runtime.

Exceptions thrown by Application Programmer

As mentioned before, all instances of java.lang.Exception and its subclasses (except
RuntimeExceptions) are generally thrown by the application programmer. In some cases,
it is okay for the application programmer to throw RuntimeExceptions as well. The
following are some important exception classes that you should remember for the exam.

1. java.lang.IllegalArgumentException extends RuntimeException
Thrown when a method receives an argument that the programmer has determined is not legal.

Example:
public void processData(byte[] data, int datatype)
{
 if(datatype != 1 || datatype != 2) throw new IllegalArgumentException();
 else …
}

2. java.lang.IllegalStateException extends java.lang.RuntimeException
Signals that a method has been invoked at an illegal or inappropriate time. In other words, the Java
environment or Java application is not in an appropriate state for the requested operation. Note that this is
different from IllegalMonitorStateException that is thrown by JVM when a thread performs an operation
that it is not permitted to (say, calls notify(), without having the lock in the first place).

Example:
Connection c = …
public void useConnection()
{
 if(c.isClosed()) throw new IllegalStateException();
 else …

http://enthuware.com

}

3. java.lang.NumberFormatException extends java.lang.IllegalArgumentException
It extends from IllegalArgumentException. It is thrown when a method that converts a String to a number
receives a String that it cannot convert.

Example:

Integer.parseInt(“asdf”);

4. java.lang.SecurityException extends java.lang.RuntimeException
Thrown if the Security Manager does not permit the operation performed due to restrictions placed by the
JVM. For example, when a java program runs in a sandbox (such as an applet) and it tries to use prohibited
APIs such as File I/O, the security manager throws this exception. Since this exception is explicitly thrown
using the new keyword by a security manager class, it can be considered to be thrown by application
programmer.

